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Abstract. We consider a generalized mean spherical approximation for the pair-connectedness
function of a dipolar hard-sphere fluid. Based on its analytical solution, we propose an
exponential approach to the continuum percolation of dipolar fluids. The mean cluster size
and the critical percolation density so obtained agree well with previously reported Monte Carlo
simulations. The KirkwoodgK factor calculated among connected dipoles, a magnitude that
can be taken as a measure of the dipolar ordering inside the cluster, also compares well with
the simulation results.

1. Introduction

The notion of percolation has been widely used to study a variety of phenomena which are
characterized by qualitative changes in the macroscopic behaviour of the systems involved.
These changes can be associated with a remarkable increase in the size of the clusters formed
by the atoms or molecules of the systems. Thus, application of percolation concepts to the
understanding of phenomena such as nucleation [1], gelation [2], spinodal decomposition
[3], water structure [4], the conductor–insulator transition in liquid metals [5] and conduction
in disordered materials [6] have been very common in the last few years. Recently, and
more directly related to our own interests here, Feldmanet al [7] have used percolation
arguments to explain the dielectric behaviour of microemulsions.

Theoretical percolation studies have been basically oriented in two directions:
percolation in lattice systems (see e.g. [8]) and percolation in continuum systems. The
latter approach has a wide field of applications in fluids and disordered systems and is that
which will be followed in this work.

Percolation is closely related to clustering and, within the framework of Hill’s theory [9],
physical clusters are defined by some connectivity criterion. A central role is played by the
pair-connectedness functionρ†(1, 2) that very properly describes the particle distribution
inside the clusters. This function, introduced some time ago by Coniglio and collaborators
[10, 11], represents the probability density of having two molecules in differential elements
d1 and d2 around their coordinates specified by1 and 2, respectively, with the condition
that both molecules belong to the same cluster. Unfortunately, the pair-connectedness
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function is not directly measurable. However it is a very useful tool in understanding the
clustering properties of several systems. In order to obtain it computer simulations or some
theoretical treatment become indispensible. Both theoretical and simulation approaches
have been intensively used in recent years to study clustering and continuum percolation
of model fluids. Among the theoretical methods we mention the connectedness version
of integral equations [12] such as the Percus–Yevick [13]–[16] and the mean spherical
approximation (MSA) [17] and also series expansions [11], [18], [19]. Simulation methods
include molecular dynamics [20] and Monte Carlo runs [21]-[26].

Integration of the pair-connectedness function over the whole available space yields
the mean cluster size, the divergence of which guarantees the existence of a percolation
transition [10]. The system density at which the percolation occurs is called the critical or
threshold density and will be denotedρc. Unlike the pair-connectedness functionρc can
be determined from experiment by establishing the density at which the value of a certain
physical quantity experiences a drastic change [27].

Pair-connectedness functions, mean cluster sizes, critical percolation densities and
several other related properties, have been calculated using the above theories for a variety
of systems: randomly centred spheres [13], [14], [21], [22]; adhesive spheres [13], [23],
extended neutral hard spheres [15], [25], [25] and hard spheres with square-wells [16],
[26] and Yukawa tails [17]. In all these systems, the particles interact among themselves
via spherically symmetric pair potentials (i.e. atomic fluids). However, many interesting
features of clustering and percolation in molecular liquids are due to the anisotropy in the
intermolecular forces.

In previous work, the percolation problem for a system with orientation-dependent
interactions, namely a dipolar-hard-sphere fluid, has been addressed through Monte Carlo
simulation and connectedness theory [28], [29].

In particular [28] pointed out that linear theories, such the mean spherical approximation,
are not suitable for studying clustering and percolation of dipolar hard spheres since the
orientation-averaged pair-connectedness functions do not depend on the dipole moment and
hence the mean cluster size these theories give are the same as for simple hard spheres
(without dipoles embedded), as is seen in figure 1 below. In order to obtain mean cluster
sizes which do depend on the dipolar moment, we propose two exponential approaches in
that work. One of them is the connectedness version of the perturbation theory of Andersen
and Chandler [30], which is based in the MSA connectedness pair correlation function. The
second exponential approach was obtained by retaining just the connectedness part of the
total pair correlation function in the perturbation theory, developed by Gubbins and Gray
[31], known as the first-ordery-expansion.

In [29], we performed Monte Carlo simulations for two models of dipolar fluids: (i) a
system of hard spheres with an embedded point dipole, say the same model we are interested
in here; (ii) a related system of hard spheres in which the dipole–dipole forces are replaced
by an angular-averaged dipolar potential. The simulation results show that clusters become
larger in size and acquire a stronger mean dipolar moment when the particles’ dipolar
moments are increased. Far from the percolation transition, the clusters are non spherical,
the eccentricity being favoured by the energetic of dipolar orientation. Furthermore, they
reveal that larger dipolar strengths imply smaller percolation densities.

In the same work the simulation data were compared with theoretical results obtained
from two different theories. The connectedness first-ordery-expansion of Gubbins and
Gray was applied to model (i), whereas the connectedness version of the Percus–Yevick
integral equation was used for model (ii). This last theory reproduces the corresponding
Monte Carlo results rather well. However it is unable to describe some interesting features
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Figure 1. Inverse mean cluster size versus reduced
density from the connectedness MSA (dotted line),
the MSA-based EXP approximation (dashed line) and
the GMSA-based EXP approximation (full line) for
a dipolar hard spheres system withµ∗2 = 2.0 and
connectivity distanced = 1.25σ . Monte Carlo data
(full circles) are from [29].

that have directly to do with the dipoles relaxation. Instead they-expansion was applied to
a model where the dipole fluctuations in orientation are explicitly taken into account, but
the comparison with simulation data gives poorer results. Thus, for example, although the
mean cluster size it gives is dipole dependent, the critical percolation density is not, giving
the sameρc whatever the dipolar moment is.

Here we consider, for the dipolar hard-sphere model, the first one of the exponential
approaches introduced in [28], namely the connectedness form of the Andersen and Chandler
perturbation theory. Yet this approach has the same deficiency as they-expansion i.e. the
ρc is not affected by the dipolar perturbation. In order to overcome this undesirable feature,
we improve the theory by considering a generalized mean spherical approximation (GMSA)
[32] for the spherical part of the pair correlation function, where the parameters are adjusted
in such a way that at contact the pair correlation functions and their first derivative verify
the quadratic hypernetted chain (QHNC) closure for dipolar hard spheres [33].

2. Theory

2.1. The model

We consider the standard model of a dipolar hard-sphere (DHS) fluid, namely an assembly
of hard spheres of diameterσ with a point dipole of dipolar momentµ at their centres.
We assume that there areN such molecules in volumeV , so that the number density is
ρ = N/V .

We denote the coordinates of a given molecule labelledi by i ≡ (ri , Ω̂i ), whereri

is the position of the sphere centre andΩ̂i gives the orientation of the point dipole. Two
dimensionless parameters characterize the system: the reduced densityρ∗ = ρσ 3 and the
reduced dipolar momentµ∗2 = βµ2/σ 3 where, as usual,β denotes the Boltzmann thermal
factor.

The pair potential between any two particles1 and2 is

V (1, 2) =
{ ∞ r12 < σ

−(
µ2/r3

12

)[
3
(
Ω̂1 · r̂12

)(
Ω̂2 · r̂12

) − (
Ω̂1 · Ω̂2

)]
r12 > σ

(1)
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Herer12 is the magnitude and̂r12 is the direction of the vector differencer12 = r1 − r2.
The model description is completed by giving a cluster definition. As pointed out by

Hill [9], the particular cluster definition is arbitrary for thermodynamic purposes, provided
it only specifies the way in which the molecular phase space gets partitioned into regions
that determine, without ambiguity, the participation of molecules in clusters.

Here we consider that two molecules belong to the same cluster if they are connected.
In order to define our connectedness criterion, we consider a ‘connectivity distance’d, so
that two spheres are directly connected if they are separated by a distance smaller than
d. Moreover, two spheres are taken as indirectly connected if they are linked by a path
of directly connected spheres, and as connected in general if they are either directly or
indirectly connected. Thus our cluster definition is equivalent to requiring connectivity
between each pair of molecules belonging to the cluster.

2.2. Pair-connectedness functions and mean cluster size

According to the previous cluster definition, the appropriate effective pair potentials between
connected and disconnected molecules are [9]

V †(1, 2) =
{

V (1, 2) r12 < d

∞ r12 > d
(2)

and

V ∗(1, 2) =
{

∞ r12 < d

V (1, 2) r12 > d
(3)

respectively, whered is the characteristic connectivity distance.
Following Hill [9], the Boltzmann factore(1, 2) ≡ exp[−βV (1, 2)] can be split into

‘connectedness’ and ‘blocking’ terms

e(1, 2) = e†(1, 2) + e∗(1, 2) (4)

where

e†(1, 2) = exp
[−βV †(1, 2)

]
(5)

and

e∗(1, 2) = exp
[−βV ∗(1, 2)

]
. (6)

Sincee(1, 2) is the statistical weight in the configurational integrals, the pair functions
can be separated in a way similar to that given by equation (4). In particular, the total and
the direct correlation functions are written

h(1, 2) = h†(1, 2) + h∗(1, 2) (7)

c(1, 2) = c†(1, 2) + c∗(1, 2) (8)

The connectedness total-correlation functionh†(1, 2) is related to the connectedness
correlation functionρ†(1, 2) according toρ†(1, 2) = (ρ/4π) [h†(1, 2) + 1].

In terms ofh†(1, 2), the mean cluster size is defined as

S(ρ) = 1 + ρ

V

∫
d1d2h†(1, 2)

= 1 + 4πρ

∫ ∞

0
dr12r

2
12

〈
h†(1, 2)

〉
Ω̂1, Ω̂2

. (9)

where〈h†(1, 2)〉Ω̂1, Ω̂2
denotes the unweighted angular average ofh†(1, 2).
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The critical densityρc verifies

lim
ρ→ρc

S(ρ) = ∞. (10)

This equation expresses, in mathematical language, the meaning ofρc; the density at which
a macroscopic fraction of molecules first become connected.

2.3. Connectedness MSA

The connectedness mean spherical approximation is defined by the connectedness Ornstein–
Zernike relation

h†(1, 2) = c†(1, 2) + ρ

4π

∫
d3h†(1, 3)c†(3, 2) (11)

with the closures

h†(1, 2) = h(1, 2) + 1 r12 < d (12)

and

c†(1, 2) = 0 r12 > d. (13)

In these equationsh†(1, 2) and c†(1, 2) are, the total and direct connectedness pair
correlation functions respectively. We use Wertheim’s MSA solution [34] forh(1, 2) in
equation (12). The solution is expanded in terms of the following three rotational invariants

8000(1, 2) = 1

8110(1, 2) = −31/2
(
Ω̂1 · Ω̂2

)
(14)

8112(1, 2) = (3/10)1/2
[
3
(
Ω̂1 · r̂12

)(
Ω̂2 · r̂12

) − (
Ω̂1 · Ω̂2

)]
where the notation of Blum [35] has been used. Therefore, the connectedness functions
h†(1, 2) andc†(1, 2) also have a similar invariant expansion

f †(1, 2) = f †000
(
r12

)
8000(1, 2) + f †110

(
r12

)
8110(1, 2) + f †112

(
r12

)
8112(1, 2) (15)

with f † ≡ h† or c†.
With this expression forh†(1, 2) and c†(1, 2), the integral equation given by

equations (11)–(13) decouples into three independent integral equations. One of them is for
the radial functionsf †000(r12) and the other two are for two auxiliary radial functions which
are functionals off †110(r12) andf †112(r12). Each one of these three integral equations can be
analytically solved using Baxter’s factorization technique. For details the reader is referred
to [28]. In particular, there it is shown that the first of these integral equations corresponds
to the connectedness MSA for just hard spheres (without dipoles) [15]. Therefore, the mean
cluster size as given by equation (9) does not depend on the dipole strength. Moreover, it
is the same as that for simple extended hard spheres:

SMSA(ρ) = 1 + 4πρ

∫ ∞

0
dr12 r2

12 · h†000
(
r12

)
(16)

sinceh†000(r12) is the pair-connectedness function for extended hard spheres of diameterσ

and a connectivity distanced.
The dotted curve in figure 1 gives the inverse of the mean cluster size for the dipolar

hard sphere model 1/SMSA(ρ), calculated in the MSA, as a function of the system density
ρ and should be compared against the ‘exact result’ given by the Monte Carlo simulation
points reported in [29]. The reduced dipolar moment isµ∗2 = 2.0 and the connectivity
distance isd = 1.25σ . As already mentioned, this curve is the same as that calculated by
DeSimoneet al [15] for extended hard spheres.



1862 C M Carlevaro et al

3. Exponential approaches

3.1. MSA-based EXP approximation

In order to overcome the undesirable fact of having a dipolar-independent mean cluster size,
in [28] we have considered a connectedness exponential approximation (EXP) that is based
on the perturbation theory of Andersen and Chandler [30], [36]. In the theory, the complete
pair potential (equation (1)) is separated:

V (1, 2) = V0(1, 2) + V1(1, 2) (17)

with

V0(1, 2) = V 000
(
r12

) =
{

∞ r12 < σ

0 r12 > σ
(18)

(the reference potential) and

V1(1, 2) = −(10/3)1/2
(
µ2/r3

12

)
8112(1, 2) (19)

the dipolar interaction. Thus, the total pair correlation functions are written

h(1, 2) = h0
(
r12

) + h1(1, 2) (20)

The functionsh0(r12) andh1(1, 2) verify 〈h(1, 2)〉Ω̂1,Ω̂2
= h0(r12) and〈h1(1, 2)〉Ω̂1,Ω̂2

= 0.
The exponential approximations we consider can formally be derived from the exact

relationship [36], [37]

g(1, 2) = g0
(
r12

)
exp

[−βV1(1, 2)
]

exp
[
h1(1, 2) − c1(1, 2) + d(1, 2)

]
(21)

Here, c1(1, 2) is the angle-dependent part of the direct correlation function andd(1, 2)

denotes elementary diagrams.
Takingd(1, 2) = 0 and using the MSA expressions forh1(1, 2) andc1(1, 2), we obtain

the EXP approximation of Andersen and Chandler [30]

g(1, 2) = g0MSA

(
r12

)
exp

[
h1MSA(1, 2)

]
(22)

whereg0MSA(r12) = g000
MSA(r12) and

h1MSA(1, 2) = h110
MSA

(
r12

)
8110(1, 2) + h112

MSA

(
r12

)
8112(1, 2). (23)

In order to obtain equation (22) we have taken into account that, in the MSA,c0(r12) = 0
andc1(1, 2) = −βV1(1, 2) for r12 > σ .

The connectedness version of the approximation in equation (22) we have proposed in
[28] is[
h

†
EXP (1, 2)

]
MSA

= g
†000
MSA

(
r12) exp

[
h1MSA(1, 2)

] +
[
g000

MSA

(
r12

)
−g

†000
MSA

(
r12

)]{
exp

[
h

†
1MSA(1, 2)

] − 1
}

(24)

with h1MSA(1, 2) giving by equation (23) andh†
1MSA(1, 2) the connectedness part of

h1MSA(1, 2)

h
†
1MSA(1, 2) = h

†110
MSA

(
r12

)
8110(1, 2) + h

†112
MSA

(
r12

)
8112(1, 2). (25)

In going from equation (22) to equation (24), the further approximation
{exp[h1MSA(1, 2)]}† ' exp[h†

1MSA(1, 2) − 1] was made. This approximation implies
discarding all the diagrams in{exp[h1MSA(1, 2)]}† which are not products of diagrams
in h

†
1MSA(1, 2) [28].
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The replacement ofh†(1, 2) in equation (9) by equation (24) gives the mean cluster size.
The involved integrations are greatly simplified if use is made of the invariant expansion for
the exponentials of tensorial expressions reported by Blum and Torruella [38]. We obtain(

SEXP
)
MSA

(ρ) = 1 + 4πρ

∫ ∞

0
dr12 r2

12

〈[
h

†
EXP (1, 2)

]
MSA

〉
Ω̂1,Ω̂2

(26)

where〈[
h

†
EXP (1, 2)

]
MSA

〉
Ω̂1,Ω̂2

= g
†000
MSA

(
r12

)
i00
0

{
h0

MSA

(
r12

); h1
MSA

(
r12

)}
+[

g000
MSA

(
r12

) − g
†000
MSA

(
r12

)]
i00
0

{
h

†0
MSA

(
r12

); h
†1
MSA

(
r12

)}
. (27)

Here

h
†0
MSA

(
r12

) = (1/3)1/2h
†110
MSA

(
r12

) − (2/15)1/2h
†112
MSA

(
r12

)
h

†1
MSA

(
r12

) = −(1/3)1/2h
†110
MSA

(
r12

) − (1/30)1/2h
†112
MSA

(
r12

) (28)

and the corresponding expressions forh0
MSA(r12) andh1

MSA(r12) are obtained by eliminating
all daggers in equation (28). In equation (27) the generalized Bessel functions
i00
0 {f 0(r12); f 1(r12)} are [38]

i00
0

{
f 0

(
r12

); f 1
(
r12

)} = 1

2

∫ 1

−1
dzi0

(
3
{[

f 1
(
r12

)]2 + z2
[
f 0

(
r12

)]2 − z0
[
f 1

(
r12

)]2
}1/2)

(29)

wherei0(x) = sinh(x)/x is the spherical modified Bessel function of zero order.
The dashed line in figure 1 shows the inverse of the cluster size(1/SEXP (ρ))MSA as

given by equations (26)–(29). We observe that, in general, the mean cluster size is now
dipole dependent but, in particular, the critical densityρc is the same as that for the extended
hard spheres without dipoles.

3.2. GMSA-based EXP approximation

To have a dipole-dependent critical density we use an exponential approach that is based on a
generalized mean spherical approximation [32]. In equation (21), we still taked(1, 2) = 0,
but now we consider thath(1, 2) andc(1, 2) verify the thermal Ornstein–Zernike equation
closed byh(1, 2) = −1 for r12 < σ and

c(1, 2) = K
e−z(r12−σ)

r12
8000(1, 2) + β

√
10

3

µ2

r3
12

8112(1, 2) for r12 > σ (30)

HereK andz are constants to be determined by requiring that, at contact, the reference part
of h(1, 2) and dh(1, 2)/dr12 verify the quadratic version of the QHNC [33] for the hard
dipoles. Thus equation (21) yields

g(1, 2) = g0GMSA

(
r12; K(µ), z(µ)

)
exp

[
h1MSA(1, 2)

]
(31)

where we explicitly indicate that, in the way they are determined, the GMSA parameters
depend on the dipolar moment.

The QHNC relation we use to calculateK andz is

c000
(
r12

) = exp

[
η000

(
r12

) + 1

3

(
η112

(
r12

) − β

√
10

3

µ2

r3
12

)2

+1

6

(
η110

(
r12

))2
]

− η000
(
r12

) − 1 (32)
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whereη ≡ h − c. By evaluating equation (32) and its derivative atr12 = σ+, we obtain a
system of two algebraic equations forK andz.

K = h000(σ ) + 1

3

(
h112(σ )

)2 + 1

6

(
h110(σ )

)2 − ln
(
h000(σ ) + 1

)
(33)

z = 1

K

[
h

′000(σ )

h000(σ ) + 1
− h

′000(σ ) − 2

3
h112(σ )h

′112(σ ) − 1

3
h110(σ )h

′110(σ0

]
− 1 (34)

whereh000(σ ) andh
′000(σ ) are functions ofK andz [32].

From equation (31), in a similar form to that previously done of the MSA-based EXP
connectedness pair correlation function, we obtain the corresponding [h

†
EXP (1, 2)]GMSA:[

h
†
EXP (1, 2)

]
GMSA

= g
†000
GMSA

(
r12

)
exp

[
h1MSA(1, 2)

]
+[

g000
GMSA

(
r12

) − g
†000
GMSA

(
r12

)]{
exp

[
h

†
1MSA(1, 2)

] − 1
}

(35)

The connectedness O–Z equation for the pair correlation functiong
†000
GMSA(r12) for extended

hard spheres, when the thermal pair correlation functiong000
GMSA(r12) verifies the O–Z

equation with Yukawa closurec(r12) = Ke−z(r12−σ)/r12, has been solved by Xu and Stell
[17].

The mean cluster size now reads(
SEXP

)
GMSA

(ρ) = 1 + 4πρ

∫ ∞

0
dr12 r2

12

〈[
h

†
EXP (1, 2)

]
GMSA

〉
Ω̂1,Ω̂2

(36)

where〈[h†
EXP (1, 2)]GMSA〉 is given by the rhs of equation (27) by just changingg000

MSA(r12)

andg
†000
MSA(r12) to g000

GMSA(r12) andg
†000
GMSA(r12), respectively.

The full line in figure 1 gives(1/SEXP (ρ))GMSA versusρ∗. The curve remarkably differs
from that corresponding to extended hard spheres (dotted line) along the whole range of
densities. In particular the critical density is smaller than the common value obtained in the
MSA and the MSA-based EXP approximation (which, as was mentioned, does not depend
on the dipolar moment) and practically coincides with the Monte Carlo result.

Figure 1 suggests that the GMSA-based EXP approximation is superior to the other
two approximations. It also reproduces simulation results better than the connectedness
first-ordery-expansion considered in [29]. In order to have a more complete picture about
the goodness of the approximation, in figure 2, we compare our results with Monte Carlo
simulations for diverse values of the dipolar moment. Furthermore, in figure 3, the average
〈[h†

EXP (1, 2)]GMSA〉 is checked against the corresponding simulation points. We see that
our theory compares rather well with Monte Carlo calculations, especially at relatively low
dipolar strengths.

As in previous work we also consider a ‘connectedness Kirkwoodg factor’ defined as
[29]

g
†
K = 1 + ρ

V

∫
d1d2

(
Ω̂1 · Ω̂2

)
h†(1, 2) (37)

This factor is proportional to the cluster average square dipolar moment. It provides a
measure of the orientational ordering inside the clusters. In table 1, GMSA-based EXP
results forg†

K are shown and compared with Monte Carlo data. Theoretical calculations
were performed using

g
†
K = 1 − 2πρ

∫ ∞

0
dr12 r2

12 g
†000
GMSA

(
r12

)
J
(
r12

)
−2πρ

∫ ∞

0
dr12 r2

12

[
g000

GMSA − g
†000
GMSA

](
r12

)
J †(r12

)
(38)
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Figure 2. Inverse cluster size versus reduced density from the connectedness GMSA-based
EXP approximation for diverse values of the reduced square dipolar moment. From left to right
µ∗2 = 1.0, 2.0, 2.75. The full circles are the Monte Carlo results of [29].

Figure 3. Angular-averaged connectedness pair-correlation function for the dipolar hard spheres
system withµ∗2 = 2.0 from the GMSA-based EXP approximation. Left:ρ∗ = 0.1; right:
ρ∗ = 0.2. The open circles are the Monte Carlo results of [29].

where

J †(r12
) =

∫ 1

−1
dz

i1

(
3

√(
h

†1
MSA

(
r12

))2
+

[(
h

†0
MSA

(
r12

))2
−

(
h

†1
MSA

(
r12

))2]
z2

)
√(

h
†1
MSA

(
r12

))2
+

[(
h

†0
MSA

(
r12

))2
−

(
h

†1
MSA
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×
[
h

†1
MSA

(
r12

) −
(
h

†0
MSA

(
r12

) + h
†1
MSA

(
r12

))
z2

]
(39)

and J (r12) is obtained by eliminating all daggers in equation (39). In this last equation
i1(x) = cosh(x)/x − sinh(x)/x2 is the modified spherical Bessel function of first order and
functionsh

†0
MSA(r12) andh

†1
MSA(r12) are given by equation (28). Equation (38) follows from

equation (37) considering the expansion of Blum and Torruella again [38].

Table 1.

µ∗2 ρ∗ (g
†
K)GMSA−EXP (g

†
K)aMC (g

†
K)aYE

0.1 1.011 1.013 1.005
1.00

0.2 1.026 1.038 1.012

0.1 1.070 1.076 1.055
2.00

0.2 1.129 1.132 1.126

0.1 1.180 1.187 1.200
2.75

0.2 1.219 1.211 1.454

a (g
†
K)MC and(g

†
K)YE are from [29].

The GMSA-based EXP approximation compares with the results obtained from
Monte Carlo simulations better than the other exponential approximations, particularly the
connectednessy expansion [29].

4. Concluding remarks

In this work we have considered theoretical approaches to the continuum percolation of
dipolar hard sphere fluids. In order to overcome an undesirable property, which is common
to all linear theories, namely that mean cluster sizes do not depend on the particles dipolar
moment, we propose to use the connectedness version of some exponential approximations.

Although a MSA-based exponential approximation, already considered in previous work,
in general gives a mean cluster size that depends on the dipolar strength, it gives a critical
density at the percolation transition that is the same as that for extended hard spheres without
dipoles.

The second exponential approximation we introduce in this work, in contrast is dipolar
dependent along the whole range of densities and compares rather well with Monte Carlo
simulations. In the approximation, the reference part of the thermal pair correlation function
is calculated using a generalized MSA where the Yukawa parameters are determined by
demanding that the radial functions in the invariant expansion of the thermal pair correlation
function and its first derivative are related at contact according to the quadratic version of
the hypernetted chain approximation.
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